N

1Y
MOTIUS

WE R&D.

NEORV32 Tutorial

Motius GmbH
November 19, 2025 20:31(ccdlcdO)

NEORV32 Tutorial & Customization

@ Educational & Open-Source Contribution (@3 2021)

~ Merged into Official Repository

Tutorial successfully merged into the official NEORV32 repository, demonstrating custom peripheral

integration methodology.

Project Overview

Timeline: Q3 2021
Type: Open-source contribution / Educational

Objective: Build a comprehensive tutorial on how to add custom IP modules to the open-source NEORV32

microcontroller

Status: [74 Complete and published

Project Goal

Create a tutorial demonstrating custom peripheral integration for the NEORV32 RISC-V processor:

e Show how to design custom IP modules

e Explain integration with NEORV32 architecture

e Document the complete development process

e Contribute to the open-source RISC-V community

e Provide reference for future custom IP development

NEORV32 Overview

What is NEORV32?

e Open-source RISC-V microcontroller
e Highly customizable processor system

e Extensive peripheral set

Seite 2 von 13

e \Well-documented architecture

e Active community support
Why NEORV32?

e Perfect for learning RISC-V concepts
e Modular design makes adding peripherals straightforward
e Open-source allows complete transparency

e Good starting point for custom SoC development

Custom IP Module: CRC32 Engine

What We Built
Hardware-Accelerated CRC32 Module

A complete Cyclic Redundancy Check (CRC32) module demonstrating custom peripheral integration
through the NEORV32's Custom Functions Subsystem (CFS).

Purpose: - Hardware-accelerated CRC32 calculation for error detection - Common requirement in
communication protocols and data integrity - Demonstrates custom peripheral design methodology -

Shows integration with processor memory-mapped /O

Technical Features: - CRC32 polynomial - Standard IEEE 802.3 polynomial - Parallel computation -
Combinatorial XOR logic (not iterative) - 8-bit input interface - Process data byte-by-byte - 32-bit result
output - Full CRC32 checksum - Memory-mapped registers - Direct CPU access - Runtime detection -
SYSINFO capability flags

Technical Implementation

NEORV32 Processor Architecture

Seite 3von 13

What is going to be added! &
neorv32_top.vhd

NEORV32 cpy (B2 JAJCIEMU)x)

(2icsr)(zifencei |(DB]

R RISC-V" (5ime (o) o) zob) || oM | o™ |

m SYSINFO CLK & RST BUS KEEPER]
Q, Custom Functions Subsystem (CFS)

o m BOOTLDROM m £\ UART1 UART1
Up to 60 PWM ‘
channels m é MTIME TRNG é SPI

Up to 8 RX/TX L\ SLINK L wbt m £\ NEOLED

al ule PU interrupt

mpati
(NeoPixel™)
External Bus Interface
Wishbone b4 (AXI4-Lite™)

The NEORV32 processor with its NEORV32 CPU core, bus infrastructure, and comprehensive peripheral
set. Our CRC32 module integrates through the Custom Functions Subsystem (CFS).

Key Components:

e NEORV32 CPU - 32-bit RISC-V core with configurable extensions

e BUS MUX - Central interconnect with Wishbone bus protocol

e SYSINFO - System information and capability flags

e Custom Functions Subsystem (CFS) - Integration point for custom peripherals
e Memory Systems - IMEM (instruction), DMEM (data), BOOTROM

e Standard Peripherals - UART, SPI, GPIO, PWM, TWI, MTIME, WDT, TRNG, etc.

¢ Debug Infrastructure - On-chip debugger (OCD) with JTAG interface

CRC32 Module Integration
Integration Point: Custom Functions Subsystem (CFS)

NEORV32 provides the CFS as a template for custom peripherals. Our CRC32 module occupies dedicated
address space outside the standard CFS region.

Memory-Mapped Register Architecture:
Register Address Width Purpose

CRC32_INPUT OXFFFFFE78 8-bit Data input (write-only)

Seite 4 von 13

https://motius-chips-3632.docs.motius.ci/assets/neorv32/neorv32.png
https://motius-chips-3632.docs.motius.ci/assets/neorv32/neorv32.png

CRC32_OUTPUT
OXFFFFFE7C 32-bit Computed CRC (read-only)

Address Space Allocation:

OXFFFFFEQO ——
| Custom Functions Subsystem (CFS)
OXFFFFFE74 —— 30 registers (reduced from 32)

|
OXFFFFFE78 ——| CRC32_INPUT (8-bit)
OXFFFFFE7C —— CRC32_OUTPUT (32-bit)

OXFFFFFE8® ——! PWM and other peripherals

Hardware Computation: - Parallel XOR chains process all 32 bits simultaneously - Combinatorial logic (no
clock cycles wasted on iteration) - Results available immediately after final byte written - Implements
standard CRC32 (IEEE 802.3) polynomial

FPGA Platform
Component Technology
FPGA AMD Xilinx Artix-7
Board Nexys A7 development board
Processor NEORV32 open-source microcontroller
Custom IP CRC module (designed by Motius)

Integration Process

Files Modified (5 Core Components)

The integration required careful modifications across the NEORV32 system:

Seite 5 von 13

neorv32_package.vhd

e Define CRC32 address constants
e Add component declarations

e Create I0 _CRC32_EN generic flag

e Declare port signals

i] neorv32_sysinfo.vhd

e Add feature bit (bit 29)
e Enable runtime capability detection

e Allow software to query hardware features

E neorv32_top.vhd

e |nstantiate CRC32 module
e Route response bus connections
e Add synthesis reporting

e Connectl/O signals

EZ neorv32_test_setup_bootloader.vhd

e Map /O signals
e Assign LED outputs for visual debugging

e Configure test harness

Seite 6 von 13

X nhexys_a7_test_setup.xdc

e Define physical pin assignments
e Map 8-bit LED output display

e Configure FPGA constraints

Integration Workflow

Recommended Approach:

1. Prototype in CFS - Test functionality in Custom Functions Subsystem first
2. Duplicate Template - Copy CFS structure for new module

3. Modify Address Space - Reduce CFS from 32 to 30 registers (free 8 bytes)
4.Integrate Response Bus - Connect module to processor bus architecture
5. Add SYSINFO Flag - Enable software capability detection

6. Validate on Board - Test with FPGA hardware

Software Driver & Usage

C Driver Implementation

The driver provides simple memory-mapped macros for hardware access:

// Memory-mapped register definitions

#define CRC32_BASE OXFFFFFE78

#define CRC32_INPUT (*(IO_REG32 (CRC32_BASE + 0)))
#define CRC32_OUTPUT (*(IO_REG32 (CRC32_BASE + 4)))

// Example usage: compute CRC32 of a string
void compute_crc32(const char *data) {
// Write data byte-by-byte
while (*data) {
CRC32_INPUT = (uint8_t)*data;
data++;

// Read final result
uint32_t result = ~CRC32_OUTPUT; // Invert for standard CRC32

printf("CRC32: 0x%08X\n", result);

Seite 7 von 13

Runtime Capability Detection

// Check if CRC32 module is available at runtime

if (SYSINFO_FEATURES & (1 << SYSINFO_FEATURES_IO_CRC32)) {
// CRC32 hardware is available
use_hardware_crc32();

} else {
// Fall back to software implementation
use_software_crc32();

Tutorial Content

What the Tutorial Covers

1. Architecture Overview - NEORV32 system architecture - Custom Functions Subsystem (CFS) interface

- Wishbone bus protocol - Memory mapping strategies

2. CRC32 Module Design - VHDL implementation with parallel XOR logic - Register interface design -
Control logic and data flow - CRC calculation algorithm in hardware

3. Integration Steps - Step-by-step modifications to 5 core files - Address space configuration -
Response bus routing - Building and synthesizing

4. Software Development - Device driver implementation in C - Memory-mapped register access -

Example applications - Performance comparison (HW vs SW)

5. Testing & Validation - Simulation and verification - FPGA testing on Nexys A7 - Debugging techniques
with LED output - Performance benchmarking

Key Learning Outcomes

For RISC-V Developers

Custom Peripheral Development: - How to design IP modules for RISC-V systems - Integration with

processor bus architectures - Memory-mapped I/O concepts - Hardware/software co-design

Seite 8 von 13

For FPGA Engineers

System Integration: - Integrating custom IP with existing systems - Wishbone bus protocol

implementation - Timing and resource optimization - FPGA synthesis and place & route

For Students & Researchers

Complete Workflow: - End-to-end custom IP development - Open-source tool usage - Documentation

best practices - Community contribution process

Open Source Contribution

Publication

@ GitHub Repository

Official NEORV32: Merged into main repository
Motius Fork: github.com/motius/neorv32

Branch: add-custom-crc32-module

Status: Successfully merged into official NEORV32 repository

Community Impact

Benefits to RISC-V Community: - Reference for custom IP development - Educational resource for new

developers - Demonstrates extensibility of NEORV32 - Lowers barrier to entry for custom peripherals

CRC32 Data Flow

The following diagram shows how data flows through the CRC32 module:

Read result

Computed checksum |

CRC32_OUTPUT
OXFFFFFE7C

Write 8-bit data.Byle stream

2-bit accumulator—=

Seite 9 von 13

https://github.com/motius/neorv32

Processing Model: 1. CPU writes data bytes sequentially to CRC32_INPUT 2. Each byte triggers
combinatorial XOR computation 3. Internal state accumulates across all bytes 4. CPU reads final 32-bit
result from CRC32_0OUTPUT 5.Result inverted to match standard CRC32 format

Technical Achievements

E Custom IP Development

{74 Designed CRC32 module from scratch in VHDL

_] Parallel XOR logic (combinatorial, not iterative)

_] Memory-mapped register interface

{74 Developed device driver in C

{74 Hardware-software co-design

o Integration Success

e [V successfully integrated with NEORV32 core

_] Modified 5 system files systematically

{74 validated on Nexys A7 FPGA

{74 Runtime capability detection via SYSINFO

{74 Documented complete process

® Educational Value

{74 Created comprehensive tutorial

_] Demonstrated extensibility methodology

{74 Provided working example code

{74 Merged into official repository

{74 Contributed to RISC-V community

Seite 10 von 13

(%) Performance Benefits

{4 Hardware acceleration vs software

{74 zero-cycle parallel computation

"4 Immediate resullts after final byte

{74 No CPU overhead during calculation

{74 validated with LED output

Skills Demonstrated

HDL Design

e Verilog/VHDL for custom IP
e Finite state machines
e Bus protocol implementation

e Timing constraints

System Integration

e RISC-V processor architecture
e Wishbone bus protocol
e Memory mapping

e Peripheral interconnect

Software Development

e Device driver development
e Embedded C programming
e Hardware abstraction layers

e Performance optimization

Seite 11von 13

Documentation

e Technical writing
e Tutorial creation
e Code documentation

e Community contribution

Impact on Motius

RISC-V Foundation

This project established our: - Understanding of RISC-V architecture - Custom IP development

methodology - Open-source contribution practices - Educational material creation

Building Block

The skills and knowledge gained here directly enabled: - eMil project (Western Digital RISC-V) - Game
Engine chip (custom IP to silicon) - Commercial Platform (commercial RISC-V integration)
Open Source Credibility

e Demonstrated technical capability to open-source community
e Established reputation in RISC-V ecosystem
e Created reusable methodologies

e Built foundation for future projects

Lessons Learned

Technical

What worked well: - NEORV32 architecture is well-designed for customization - Wishbone bus is

straightforward to implement - Open-source tools are production-ready - Community support is excellent

Challenges: - Timing closure requires careful design - Resource utilization must be optimized -

Documentation takes significant effort - Testing and validation is time-intensive

Seite 12 von 13

Process

Best Practices: - Start with simple examples - Incremental integration and testing - Comprehensive

documentation from start - Community engagement throughout

Next Steps from This Project
This tutorial project led to:

1. eMil (2022) - More complex RISC-V integration with WD EH1 core
2. Game Engine Chip (2022-2024) - Custom IP - manufactured silicon

3. Commercial Platform (2025) - Commercial RISC-V platform development

Progression:

NEORV32 Tutorial - eMil Research - Game Engine Manufacturing - Commercial Platform

< eMil Project Back to Case Studies

Seite 13 von 13

https://motius-chips-3632.docs.motius.ci/case-studies-silicon/emil/
https://motius-chips-3632.docs.motius.ci/case-studies-silicon/

