
NEORV32 Tutorial

Motius GmbH

November 19, 2025 20:31 (ccd1cd0)

Seite 2 von 13

NEORV32 Tutorial & Customization

 Educational & Open-Source Contribution (Q3 2021)

Tutorial successfully merged into the official NEORV32 repository, demonstrating custom peripheral

integration methodology.

Project Overview

Timeline: Q3 2021

Type: Open-source contribution / Educational

Objective: Build a comprehensive tutorial on how to add custom IP modules to the open-source NEORV32

microcontroller

Status: ✅ Complete and published

Project Goal

Create a tutorial demonstrating custom peripheral integration for the NEORV32 RISC-V processor:

Show how to design custom IP modules

Explain integration with NEORV32 architecture

Document the complete development process

Contribute to the open-source RISC-V community

Provide reference for future custom IP development

NEORV32 Overview

What is NEORV32?

Open-source RISC-V microcontroller

Highly customizable processor system

Extensive peripheral set

Merged into Official Repository

Seite 3 von 13

Well-documented architecture

Active community support

Why NEORV32?

Perfect for learning RISC-V concepts

Modular design makes adding peripherals straightforward

Open-source allows complete transparency

Good starting point for custom SoC development

Custom IP Module: CRC32 Engine

What We Built

Hardware-Accelerated CRC32 Module

A complete Cyclic Redundancy Check (CRC32) module demonstrating custom peripheral integration

through the NEORV32's Custom Functions Subsystem (CFS).

Purpose: - Hardware-accelerated CRC32 calculation for error detection - Common requirement in

communication protocols and data integrity - Demonstrates custom peripheral design methodology -

Shows integration with processor memory-mapped I/O

Technical Features: - CRC32 polynomial - Standard IEEE 802.3 polynomial - Parallel computation -

Combinatorial XOR logic (not iterative) - 8-bit input interface - Process data byte-by-byte - 32-bit result

output - Full CRC32 checksum - Memory-mapped registers - Direct CPU access - Runtime detection -

SYSINFO capability flags

Technical Implementation

NEORV32 Processor Architecture

Seite 4 von 13

The NEORV32 processor with its NEORV32 CPU core, bus infrastructure, and comprehensive peripheral

set. Our CRC32 module integrates through the Custom Functions Subsystem (CFS).

Key Components:

NEORV32 CPU - 32-bit RISC-V core with configurable extensions

BUS MUX - Central interconnect with Wishbone bus protocol

SYSINFO - System information and capability flags

Custom Functions Subsystem (CFS) - Integration point for custom peripherals

Memory Systems - IMEM (instruction), DMEM (data), BOOTROM

Standard Peripherals - UART, SPI, GPIO, PWM, TWI, MTIME, WDT, TRNG, etc.

Debug Infrastructure - On-chip debugger (OCD) with JTAG interface

CRC32 Module Integration

Integration Point: Custom Functions Subsystem (CFS)

NEORV32 provides the CFS as a template for custom peripherals. Our CRC32 module occupies dedicated

address space outside the standard CFS region.

Memory-Mapped Register Architecture:

Register Address Width Purpose

CRC32_INPUT 0xFFFFFE78 8-bit Data input (write-only)

https://motius-chips-3632.docs.motius.ci/assets/neorv32/neorv32.png
https://motius-chips-3632.docs.motius.ci/assets/neorv32/neorv32.png

Seite 5 von 13

CRC32_OUTPUT
0xFFFFFE7C 32-bit Computed CRC (read-only)

Address Space Allocation:

Hardware Computation: - Parallel XOR chains process all 32 bits simultaneously - Combinatorial logic (no

clock cycles wasted on iteration) - Results available immediately after final byte written - Implements

standard CRC32 (IEEE 802.3) polynomial

FPGA Platform

Component Technology

FPGA AMD Xilinx Artix-7

Board Nexys A7 development board

Processor NEORV32 open-source microcontroller

Custom IP CRC module (designed by Motius)

Integration Process

Files Modified (5 Core Components)

The integration required careful modifications across the NEORV32 system:

0xFFFFFE00 ────┐
 │ Custom Functions Subsystem (CFS)
0xFFFFFE74 ────┤ 30 registers (reduced from 32)
 │

0xFFFFFE78 ────┤ CRC32_INPUT (8-bit)
0xFFFFFE7C ────┤ CRC32_OUTPUT (32-bit)
 │
0xFFFFFE80 ────┘ PWM and other peripherals

Seite 6 von 13

 neorv32_package.vhd

Define CRC32 address constants

Add component declarations

Create IO_CRC32_EN generic flag

Declare port signals

 neorv32_sysinfo.vhd

Add feature bit (bit 29)

Enable runtime capability detection

Allow software to query hardware features

 neorv32_top.vhd

Instantiate CRC32 module

Route response bus connections

Add synthesis reporting

Connect I/O signals

 neorv32_test_setup_bootloader.vhd

Map I/O signals

Assign LED outputs for visual debugging

Configure test harness

Seite 7 von 13

 nexys_a7_test_setup.xdc

Define physical pin assignments

Map 8-bit LED output display

Configure FPGA constraints

Integration Workflow

Recommended Approach:

1. Prototype in CFS - Test functionality in Custom Functions Subsystem first

2. Duplicate Template - Copy CFS structure for new module

3. Modify Address Space - Reduce CFS from 32 to 30 registers (free 8 bytes)

4. Integrate Response Bus - Connect module to processor bus architecture

5. Add SYSINFO Flag - Enable software capability detection

6. Validate on Board - Test with FPGA hardware

Software Driver & Usage

C Driver Implementation

The driver provides simple memory-mapped macros for hardware access:

// Memory-mapped register definitions

#define CRC32_BASE 0xFFFFFE78

#define CRC32_INPUT (*(IO_REG32 (CRC32_BASE + 0)))

#define CRC32_OUTPUT (*(IO_REG32 (CRC32_BASE + 4)))

// Example usage: compute CRC32 of a string

void compute_crc32(const char *data) {

 // Write data byte-by-byte

 while (*data) {

 CRC32_INPUT = (uint8_t)*data;

 data++;

 }

 // Read final result

 uint32_t result = ~CRC32_OUTPUT; // Invert for standard CRC32

 printf("CRC32: 0x%08X\n", result);

}

Seite 8 von 13

Runtime Capability Detection

Tutorial Content

What the Tutorial Covers

1. Architecture Overview - NEORV32 system architecture - Custom Functions Subsystem (CFS) interface

- Wishbone bus protocol - Memory mapping strategies

2. CRC32 Module Design - VHDL implementation with parallel XOR logic - Register interface design -

Control logic and data flow - CRC calculation algorithm in hardware

3. Integration Steps - Step-by-step modifications to 5 core files - Address space configuration -

Response bus routing - Building and synthesizing

4. Software Development - Device driver implementation in C - Memory-mapped register access -

Example applications - Performance comparison (HW vs SW)

5. Testing & Validation - Simulation and verification - FPGA testing on Nexys A7 - Debugging techniques

with LED output - Performance benchmarking

Key Learning Outcomes

For RISC-V Developers

Custom Peripheral Development: - How to design IP modules for RISC-V systems - Integration with

processor bus architectures - Memory-mapped I/O concepts - Hardware/software co-design

// Check if CRC32 module is available at runtime

if (SYSINFO_FEATURES & (1 << SYSINFO_FEATURES_IO_CRC32)) {

 // CRC32 hardware is available

 use_hardware_crc32();

} else {

 // Fall back to software implementation

 use_software_crc32();

}

Seite 9 von 13

For FPGA Engineers

System Integration: - Integrating custom IP with existing systems - Wishbone bus protocol

implementation - Timing and resource optimization - FPGA synthesis and place & route

For Students & Researchers

Complete Workflow: - End-to-end custom IP development - Open-source tool usage - Documentation

best practices - Community contribution process

Open Source Contribution

Publication

Official NEORV32: Merged into main repository

Motius Fork: github.com/motius/neorv32

Branch: add-custom-crc32-module

Status: Successfully merged into official NEORV32 repository

Community Impact

Benefits to RISC-V Community: - Reference for custom IP development - Educational resource for new

developers - Demonstrates extensibility of NEORV32 - Lowers barrier to entry for custom peripherals

CRC32 Data Flow

The following diagram shows how data flows through the CRC32 module:

GitHub Repository

Write 8-bit data Byte stream

32-bit accumulator

Computed checksum

Read result

Capability flag CPU

CRC32_INPUT

0xFFFFFE78

CRC32 Engine

Parallel XOR Logic

CRC32_OUTPUT

0xFFFFFE7C

SYSINFO

https://github.com/motius/neorv32

Seite 10 von 13

Processing Model: 1. CPU writes data bytes sequentially to CRC32_INPUT 2. Each byte triggers

combinatorial XOR computation 3. Internal state accumulates across all bytes 4. CPU reads final 32-bit

result from CRC32_OUTPUT 5. Result inverted to match standard CRC32 format

Technical Achievements

 Custom IP Development

✅ Designed CRC32 module from scratch in VHDL

✅ Parallel XOR logic (combinatorial, not iterative)

✅ Memory-mapped register interface

✅ Developed device driver in C

✅ Hardware-software co-design

 Integration Success

✅ Successfully integrated with NEORV32 core

✅ Modified 5 system files systematically

✅ Validated on Nexys A7 FPGA

✅ Runtime capability detection via SYSINFO

✅ Documented complete process

 Educational Value

✅ Created comprehensive tutorial

✅ Demonstrated extensibility methodology

✅ Provided working example code

✅ Merged into official repository

✅ Contributed to RISC-V community

Seite 11 von 13

 Performance Benefits

✅ Hardware acceleration vs software

✅ Zero-cycle parallel computation

✅ Immediate results after final byte

✅ No CPU overhead during calculation

✅ Validated with LED output

Skills Demonstrated

HDL Design

Verilog/VHDL for custom IP

Finite state machines

Bus protocol implementation

Timing constraints

System Integration

RISC-V processor architecture

Wishbone bus protocol

Memory mapping

Peripheral interconnect

Software Development

Device driver development

Embedded C programming

Hardware abstraction layers

Performance optimization

Seite 12 von 13

Documentation

Technical writing

Tutorial creation

Code documentation

Community contribution

Impact on Motius

RISC-V Foundation

This project established our: - Understanding of RISC-V architecture - Custom IP development

methodology - Open-source contribution practices - Educational material creation

Building Block

The skills and knowledge gained here directly enabled: - eMil project (Western Digital RISC-V) - Game

Engine chip (custom IP to silicon) - Commercial Platform (commercial RISC-V integration)

Open Source Credibility

Demonstrated technical capability to open-source community

Established reputation in RISC-V ecosystem

Created reusable methodologies

Built foundation for future projects

Lessons Learned

Technical

What worked well: - NEORV32 architecture is well-designed for customization - Wishbone bus is

straightforward to implement - Open-source tools are production-ready - Community support is excellent

Challenges: - Timing closure requires careful design - Resource utilization must be optimized -

Documentation takes significant effort - Testing and validation is time-intensive

Seite 13 von 13

Process

Best Practices: - Start with simple examples - Incremental integration and testing - Comprehensive

documentation from start - Community engagement throughout

Next Steps from This Project

This tutorial project led to:

1. eMil (2022) - More complex RISC-V integration with WD EH1 core

2. Game Engine Chip (2022-2024) - Custom IP → manufactured silicon

3. Commercial Platform (2025) - Commercial RISC-V platform development

Progression:

← eMil Project Back to Case Studies

NEORV32 Tutorial → eMil Research → Game Engine Manufacturing → Commercial Platform

https://motius-chips-3632.docs.motius.ci/case-studies-silicon/emil/
https://motius-chips-3632.docs.motius.ci/case-studies-silicon/

